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We investigate the optical trapping of a Rayleigh particle by a linearly or radially polarized Gaussian beam.
The Mie theory is applied to obtain a full solution, with the incident beam being described by the mixed dipole
model, which is beyond the paraxial approximation. We then obtain approximate analytical expressions for the
optical force, equilibrium position, and trap stiffness for a Rayleigh particle. At equilibrium, the displacement
for the particle from the focus scales like a3 �where a is the radius� for a transparent particle, owing to
scattering, whereas for absorptive particles it scales like C+Da2, owing to absorption. The trap stiffness is
found to be proportional to a3, in agreement with the recent experiment. The radially polarized beam is found
to be superior to the linearly polarized beam in the Rayleigh regime in terms of its ability to trap. It is found
that the larger the ratio of �r /�i, the closer the equilibrium to the focus, and thus higher stability.
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I. INTRODUCTION

Optical tweezers �1–18�, introduced by Ashkin et al. in
1986, has been developed into a powerful and versatile ex-
perimental tool. It has found application in the frontier of a
variety of exciting research fields, such as atomic physics,
colloidal science, nanoscience, and biology �16,19–22�.
While optical tweezer is such a versatile and convenient ex-
perimental tool, the theoretical modeling of optical tweezers
is by no means an easy task. Quantitative agreement between
the experiment and the theoretical modeling was achieved
only in recent years �15,17,18�. Moreover, these accurate
theoretical works rely on heavy numerical simulation, con-
sequently the underlying physics is not transparent. The dif-
ficulty in modeling optical tweezers resides in the fact that
the trapping beam is a tightly focused beam, where the con-
ventional paraxial description of laser beam fails. In this pa-
per, the Mie theory is applied to calculate the optical force,
with the trapping beam being modeled by the mixed dipole
model theory �23�. In this mixed dipole model theory, the
field singularities are replaced by phase singularities, thus it
can be physically realized �24�. The resultant beam is a rig-
orous solution to the Maxwell equations, furthermore, the
model proves efficient in modeling Gaussian beam near the
focal region beyond the paraxial limit �25�. Thus our results
go beyond the conventional paraxial approximation. More-
over, in the limit of a loosely focused beam, our result re-
duces to that of the paraxial approximation by Harada �8�.
We then develop an analytical model for an optically trapped
Rayleigh particle �a /��1, where a is the radius�. It is found
that the equilibrium position of an optically trapped Rayleigh
particle is slightly displaced away from the focus and biased
toward the propagating direction of the beam, and this bias is
qualitatively different for absorptive and transparent par-
ticles. This bias goes like a3 for transparent particles, owing

to scattering, and equals to C+Da2 for absorptive particles,
owing to absorption. Here C and D are constants indepen-
dent of a. An expression for the trap stiffness is derived,
which is found to be proportional to a3, in agreement with
the recent experimental measurements of Hansen et al. �26�.
This is not entirely unexpected since the gradient force is
responsible for the trap stiffness and the gradient force is
proportional to a3. The explicit analytical expressions of the
scattering force and the gradient force are also derived. It
was previously demonstrated by Kawauchi �27� and Niem-
inen �28� that radially polarized beams can be used to im-
prove the performance of optical tweezers in the geometrical
optics regime and the Mie regime, owing to the reduced
scattering. Here we shall show that the radially polarized
beams are also superior to the linearly polarized beams in the
Rayleigh regime.

The paper is organized as follows. In Sec. II, some fun-
damental formulas for calculating forces on a spherical par-
ticle are derived using the Mie theory, with the incident
Gaussian beam being described by the mixed dipole model.
Simplified analytical expressions of the forces are presented
in Sec. III, for both absorptive and transparent particles. Dif-
ferences between our forces expressions and those by Harada
are tabulated in Appendix B. In Sec. IV, the analytical ap-
proach as well as the Mie theory approach are applied to
study the properties of optically trapped particle. The depen-
dency of the equilibrium positions for both absorptive and
transparent particles on the permittivities is investigated for
both linearly and radially polarized Gaussian beams. The su-
periority of radially polarized Gaussian beam over linearly
polarized beam is clearly demonstrated in trapping a Ray-
leigh particle. Section V is the conclusion. Details on some
results in force expressions are tabulated in the appendixes.

II. GENERAL FORMULATION

In this section, using the mixed dipole model to describe
the incident trapping beam, we present the formalism for the
calculations of optical forces exerted on a spherical particle.
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We consider a spherical particle with permittivity �0� sur-
rounded by a homogeneous and lossless medium with per-
mittivity �0. Since we are working in optical frequency, most
materials are nonmagnetic. Accordingly, we take �=�0 for
both the particle and its background medium.

A. Optical force calculated by Mie theory

We choose the origin of our coordinate system to be lo-
cated at the center of the sphere. According to the Mie theory
�29–32�, the incident electromagnetic fields �Einc ,Hinc�, the
scattered fields �Esca ,Hsca� and the internal fields �Eint ,Hint�
can be expanded in terms of the vector spherical wave func-
tions �Mmn

�1� ,Nmn
�1�� and �Mmn

�3� ,Nmn
�3�� �33–37�,

Einc = − �
n=1

�

�
m=−n

n

�p̄mnNmn
�1��kr� + q̄mnMmn

�1��kr�� , �1a�

Esca = �
n=1

�

�
m=−n

n

�āmnNmn
�3��kr� + b̄mnMmn

�3��kr�� , �1b�

Eint = − �
n=1

�

�
m=−n

n

�d̄mnNmn
�1��ksr� + c̄mnMmn

�1��ksr�� , �1c�

Hinc =
ik

��0
�
n=1

�

�
m=−n

n

�q̄mnNmn
�1��kr� + p̄mnMmn

�1��kr�� , �2a�

Hsca = −
ik

��0
�
n=1

�

�
m=−n

n

�b̄mnNmn
�3��kr� + āmnMmn

�3��kr�� ,

�2b�

Hint =
iks

��0
�
n=1

�

�
m=−n

n

�c̄mnNmn
�1��ksr� + d̄mnMmn

�1��ksr�� , �2c�

where

p̄mn = iEmnpmn, q̄mn = iEmnqmn,

āmn = iEmnamn, b̄mn = iEmnbmn,

d̄mn = iEmndmn, c̄mn = iEmncmn,

Emn = �E0�in� �2n + 1��n − m�!
n�n + 1��n + m�!�1/2

, �3�

ks�k� denotes the wave number inside the sphere �surround-
ing medium�. Here the superscript 1 and 3 in the vector
spherical harmonics denote its radial function, with 1 corre-
sponds to the spherical Bessel function jn and 3 corresponds
to the spherical Hankel function of the first kind hn

�1�. For the
incident fields �1a� and �2a� and the internal fields �1c� and
�2c�, the spherical Bessel function is employed since the field
must be finite at the origin. For the scattered fields �1b� and
�2b�, since they are outgoing waves, the spherical Hankel
function of the first kind is employed.

The expansion coefficients of the incident fields are given
by

pmn =
kr

jn�kr�	�

�er · Einc�r,	,
��Fn,m�	,
�d� , �4a�

qmn =
Zkr

jn�kr�	�

�er · Hinc�r,	,
��Fn,m�	,
�d� , �4b�

where Z=
�0

�0
is the impedance and the function Fn,m in the

integrand is defined as

Fn,m�	,
� =
i1−n


4�n�n + 1��E0�
Yn,m

� �	,
� ,

with Yn,m
� �	 ,
� denoting the complex conjugate of the

spherical harmonic function

Yn,m
� �	,
� = � �2n + 1�

4�

�n − m�!
�n + m�!�1/2

Pn
m�cos 	�e−im
.

Here, we define two dimensionless parameters where

� = ka, ms =
ks

k
,

where a denotes the radius of the sphere.
The total fields outside the sphere are

Eext = Esca + Einc, Hext = Hsca + Hinc. �5�

By applying the standard boundary conditions

�Eext − Eint�  er = 0, �Hext − Hint�  er = 0, �6�

we can relate the expansion coefficients of the scattered
fields to that of the incident fields,

amn = anpmn, bmn = bnqmn, �7�

where the Mie coefficients an and bn are given by

an =
ms�n�ms���n���� − �n����n��ms��
ms�n�ms���n���� − �n����n��ms��

, �8a�

bn =
�n�ms���n���� − ms�n����n��ms��
�n�ms���n���� − ms�n����n��ms��

, �8b�

and the Ricatti-Bessel functions �n, �n are given by �34�

�n��� = �jn���, �n��� = �hn
�1���� . �9�

where jn��� and hn
�1���� are, respectively, the spherical Bessel

function and the spherical Hankel function of the first kind.
Outside the particle, the time-averaged Maxwell stress

tensor can be obtained from the incident and the scattered
fields,

T =
1

2
Re�EextDext

� −
1

2
Eext · Dext

� I + HextBext
� −

1

2
Hext · Bext

� I� .

�10�

By integrating the Maxwell stress tensor over a closed sur-
face, the time-averaged force can be obtained �38,39�,
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F =	 dS · T =	 �er · T�d� =	 �T · er�d� , �11�

we can derive the three Cartesian components of optical
forces as �40,41�

Fx = Re�F1�, Fy = Im�F1�, Fz = Re�F2� , �12�

where

F1 =
2��0

k2 �E0�2�
n=1

�

�
m=−n

n � ��n − m��n + m + 1��1/2

n�n + 1�

 �ãm,nb̃m+1,n
� + b̃m,nãm+1,n

� − p̃m,nq̃m+1,n
� − q̃m,np̃m+1,n

� �

− �n�n + 2��n + m + 1��n + m + 2�
�n + 1�2�2n + 1��2n + 3� �1/2

 �ãm,nãm+1,n+1
� + b̃m,nb̃m+1,n+1

� − p̃m,np̃m+1,n+1
�

− q̃m,nq̃m+1,n+1
� � + �n�n + 2��n − m��n − m + 1�

�n + 1�2�2n + 1��2n + 3� �1/2

 �ãm,n+1ãm+1,n
� + b̃m,n+1b̃m+1,n

� − p̃m,n+1p̃m+1,n
�

− q̃m,n+1q̃m+1,n
� �� , �13a�

F2 = −
4��0

k2 �E0�2�
n=1

�

�
m=−n

n � m

n�n + 1�
 �ãm,nb̃m,n

� − p̃m,nq̃m,n
� �

+ �n�n + 2��n − m + 1��n + m + 1�
�n + 1�2�2n + 1��2n + 3� �1/2

 �ãm,nãm,n+1
� + b̃m,nb̃m,n+1

� − p̃m,np̃m,n+1
� − q̃m,nq̃m,n+1

� �� ,

�13b�

and

ãm,n = am,n −
1

2
pm,n, p̃m,n =

1

2
pm,n,

b̃m,n = bm,n −
1

2
qm,n, q̃m,n =

1

2
qm,n. �13c�

We note that up to now, we have not yet specified the
expansion coefficients of the incident fields. Consequently
the expressions of the forces Eq. �12� are general and appli-
cable to an arbitrary incident field. In the following sections,
we shall apply this formalism to a specific problem: a par-
ticle illuminated by a Gaussian beam described by the mixed
dipole model. We shall also study the problem in the long
wavelength limit, in which case, simple analytical expres-
sions of the optical forces can be obtained.

B. Mixed dipole model for linearly and radially polarized
Gaussian beam

Traditionally, the Gaussian beam is treated in the paraxial
limit, nevertheless, such paraxial beam is not a rigorous so-

lution to Maxwell equations, and thus it is not physically
realizable. Although the problem is not serious for a loosely
focused laser beam, it becomes significant for a tightly fo-
cused beam, as in the case of optical tweezers. In order to
overcome this difficulty, instead of the paraxial Gaussian
beam, we take the mixed dipole model �complex sources and
sinks model� to describe the incident Gaussian beam, which
is first introduced by Sheppard and Saghafi �23�. The result-
ant beam is a rigorous solution to the Maxwell equations,
moreover, the model proves efficient in modeling Gaussian
beam near the focal region beyond the paraxial limit �25�.
We use this model to describe the field near the focus of a
Gaussian beam. The region near the focus is the region that
we are most interested. We note that this model has already
been used in many works �25,42,43�.

In this model, in order to avoid nonphysical singularities
in the focal plane at a radius equal to the confocal parameter,
for a linearly polarized Gaussian beam, Sheppard �23� sug-
gested that the vector potential of the dipoles be written as

Ap =
Apx + Apx

�

2i
, Am =

Amy + Amy
�

2i
, �14�

where

Apx =
eikR

ikR
ex, Amy =

eikR

ikR
ey , �15�

are, respectively, the vector potential of an electric dipole p
= p0ex and a magnetic dipole m=m0ey located at a virtual
location of �0,0 ,z0+ il0�, where �0,0 ,z0� is the center of the
trapping beam, l0= 1

2kw0
2 is the Rayleigh diffraction length,

and w0 is the waist radius. Here p0 and m0 are the amplitude
of p and m, respectively, and we have set p0=1 and m0=1
for convenience. Accordingly the trapping beam, which
propagates along +z direction, can be expressed as

E = E0k�l0 − iz0�exp�− kl0�

 � i

k2 �  ��  Ap� −
1

k
�  Am� , �16a�

H = Z−1E0k�l0 − iz0�exp�− kl0�

 � i

k2 �  ��  Am� +
1

k
�  Ap� . �16b�

By substituting Eq. �14� into Eq. �16�, it is straightforward
to find the radial components of incident electromagnetic
fields er ·Einc�r ,	 ,
� and er ·Hinc�r ,	 ,
�. By inserting these
expressions into Eq. �4�, explicit expressions for pmn and qmn
for a beam propagating along z axis are obtained,

p1n =

2n + 1

2in � �n + 1�i
2n + 1

jn−1�ikzc� + jn�ikzc�

−
ni

2n + 1
jn+1�ikzc�� kl0

ekl0
,

p1n = − p−1n = q1n = q−1n,
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pmn = qmn = 0, if m � � 1, �17�

with zc= l0− iz0.
In addition, for a sphere in a radially polarized Gaussian

beam, only the vector potential of an electric dipole p= p0ez

needs to be considered, and it is given by Ap= sin kR
ikR ez, and

the corresponding pmn and qmn are

p0n =
l0

inzc


�2n + 1�n�n + 1�jn�ikzc�e−kl0,

q0n = 0, pmn = qmn = 0, if m � 0. �18�

III. ANALYTICAL CALCULATIONS

Based on the theory outlined in the preceding parts of the
paper, this section presents some analytical results in the
long wavelength limit. We shall only present the calculation
details for a particle trapped by a linearly polarized Gaussian
beam, and the case for a radially polarized Gaussian beam
can be treated likewise. Throughout this paper, the linearly
polarized Gaussian beam is polarized along the x direction.

Based on Eqs. �13a�, �13b�, and �17�, we can derive, in the
long wavelength limit, a simple analytical expression of the
optical force. It should be noted that the gradient force domi-
nates along the transverse directions �i.e., x and y directions�,
so particles with positive polarizability �such as dielectric
particles� are always stable along the transverse directions, as
they are attracted by the intensity maximum. Likewise, par-
ticles with negative polarizability �such as metallic particles�
are always unstable along the transverse directions, as they
are repelled by the intensity maximum. Consequently, we
shall only concentrate on the longitudinal force Fz for par-
ticle with positive polarizability. For particles with positive
polarizability, whether or not a particle can be trapped de-
pends on whether the gradient force along the z direction is
strong enough to overcome the scattering force.

By inserting Eqs. �13c� and �17� into Eq. �13b�, we obtain
the Taylor series expansion of Fz,

Fz = Re�F2� = c3�3 + c5�5 + c6�6 + o��7� , �19�

where terms that are higher than �6 are truncated. Although
we have already expanded Fz in a Taylor series of �, the
expansion coefficients c3, c5, and c6 are still complicated and
further approximations are needed. We thus simplify Eq. �19�
based on the following principles:

�i� We neglect terms that are associated with e−2kl0, e−4kl0,
and so on. This can be well justified. Consider for example,
a focused Gaussian beam with the waist radius w0=� �� is
the wavelength�, kl0=2�2, then e−2kl0 710−18, e−4kl0 5
10−35, which are negligibly small.

�ii� The particle is close to the center of the beam, i.e.,
�z0�� l0. This is again reasonable, since this is the region
where optical trapping happens.

By introducing two dimensionless parameters �=kl0 and
�=kz0, we have the relationship

��� � � . �20�

A. Transparent particle

For a transparent particle, the permittivity � of the sphere
is real. In order to facilitate the understanding of the physics
associated with the individual terms in the force expressions,
we compare our formulas with those of the plane wave case.
Force on a sphere induced by a plane wave can be entirely
attributed to the radiation pressure or scattering force

Fz
pw =

4��0E0
2

k2

�� − 1�2

3�� + 2�2�6. �21�

The corresponding term in the case of a linearly polarized
Gaussian beam is

Fz,sca
Gb = c6�6 =

4��0E0
2

k2

�� − 1�2

3�� + 2�2g0�6, �22�

where g0 is given in Appendix A.
Using Eq. �20� in Eq. �22�, Eq. �22� can be simplified to

Fz,sca
Gb =

4��0E0
2

k2

�� − 1�2

3�� + 2�2g����6, �23�

which is independent of the location of the sphere and differs
from Eq. �21� only by a factor g��� defined as

g��� = 1 −
3

�
+

5

�2 −
5

�3 +
11

4�4 −
3

4�5 . �24�

Note that the factor g��� depends only on the characteristic
parameter of the Gaussian beam �=kl0, and in the limit l0
→� where a linearly polarized Gaussian beam turns into a
plane wave, g���→1, thus Fz,sca

Gb carries the same physical
meaning as Fz

pw.
For a sphere illuminated by a Gaussian beam, there is also

a gradient force due to the inhomogeneity of the field inten-
sity,

Fz,grad = c3�3 + c5�5, �25�

where

c3 =
2��0E0

2

k2

�� − 1��
�� + 2��2h0,

c5 =
2��0E0

2

k2

�

60�� + 2�2�2� + 3��8h1, �26�

and h0 and h1 are given in Appendix A.
Using Eq. �20� and retaining only the dominating �3 term

in Eq. �25�, Eq. �25� can be simplified to

Fz,grad =
2��0E0

2

k2

�� − 1��
�� + 2��2h����3, �27�

where

h��� = 1 −
4

�
+

6

�2 −
3

�3 +
3

4�4 . �28�

Note that Fz,grad vanishes as l0→�, which corresponds to the
situation of a plane wave.
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To provide a lucid explanation of the physical meaning of
Eq. �27�, we calculate the gradient force acting on a dipolar
particle with polarizability �44�

� = 4��0a3�� − 1

� + 2
� . �29�

From Eqs. �14� and �16�, it is straightforward to show that
Eq. �27� equals to

Fz,grad =
�

4
� ��E�2��x=y=0. �30�

i.e., Eq. �27� is the gradient force.
In the conventional paraxial approximation, the paraxial

Gaussian beam in fact satisfies the approximate paraxial
wave equation, rather than the Maxwell equations. In our
theory, by employing the mixed dipole model �the resultant
beam is a rigorous solution to the Maxwell equations, fur-
thermore, the model proves efficient in modeling Gaussian
beam near the focal region beyond paraxial limit �23,25��,
our force expressions are results beyond paraxial approxima-
tion. We also tabulated the differences between our force
expressions and those of the paraxial approximation �8� in
Appendix B. We note that these differences vanish when �
=kl0= 1

2k2w0
2 is large, which precisely corresponds to the

paraxial limit.
A particle will be trapped at the position where the scat-

tering force and the gradient force balance each other,

�Fz,sca + Fz,grad��z0=zequ
= 0. �31�

From Eqs. �23�, �27�, and �31�, the equilibrium position is
given by

zequ = −
2�� − 1�
3k�� + 2�

g���
h���

�2�3, �32�

Note that zequ in Eq. �32� is the position for the center of
the beam, whereas the particle is located at the origin. In the
case of a loosely focused Gaussian beam �for example, the
waist radius w0=�, and therefore �=2�2�, g���

h��� �1, the equi-
librium position can be simplified into

zequ = −
�� − 1�k6

6�� + 2�
a3w0

4. �33�

From Eq. �33�, we can see the a3 and w0
4 dependence of the

equilibrium position. It is clear from Eq. �33� that the larger
the particle, the further away the equilibrium from the beam
center �owing to scattering force�, and the smaller the beam
waist, the closer the equilibrium from the beam center �ow-
ing to stronger gradient force�.

B. Absorptive particle

For an absorptive particle, its refractive index is a com-
plex number. There appears another force component owing
to absorption in the scattering force expression for this case
whereas it disappears for the transparent case, and we will
see later that this absorptive force will dominates in the scat-
tering force. In order to distinguish the different meanings

between the absorptive force component and the original
scattering force, we denote the absorptive term as Fz,abs, and
denote the original scattering component still as Fz,sca. The
forces acting on a sphere that is illuminated by a plane wave
are given by

Fz,sca
pw =

4��0E0
2

3k2 q�nR,nI��6, �34a�

Fz,abs
pw =

4��0E0
2

k2 u�nR,nI��3 +
2��0E0

2

15k2 p�nR,nI��5,

�34b�

where q�nR ,nI�, u�nR ,nI�, and p�nR ,nI� are tabulated in Ap-
pendix A, and nR and nI are the real and imaginary part of
the complex refractive index, respectively. On the other
hand, for an absorptive particle illuminated by a linearly po-
larized Gaussian beam, the forces are

Fz = Fz,sca + Fz,grad + Fz,abs, �35�

with

Fz,sca = c6
e�6, �36a�

Fz,grad = c3
o�3 + c5

o�5, �36b�

Fz,abs = c3
e�3 + c5

e�5 + c6
o�6, �36c�

Here ci
e and ci

o are, respectively, the even and odd series in
the Taylor series expansion of ci in terms of �=

z0

l0
at �=0.

Similar to Eq. �30�, Eq. �36b� can also be written as the
gradient of the field intensity

Fz,grad =
1

4
Re�� � ��E�2��x=y=0� . �37�

Using Eq. �20� and keep only the leading order terms �0,
�1 in c3 ,c5, and c6, Eq. �36� becomes

Fz,sca = �6
0�6, �38a�

Fz,grad = �3
1��3 + �5

1��5, �38b�

Fz,abs = �3
0�3 + �5

0�5 + �6
1��6, �38c�

where �i
0 and �i

1 are the coefficients of �0 and �1 in the series
expansion of ci respectively. By further truncating terms that
are of the order of �4 or higher in Eqs. �38b� and �38c�, the
force expressions are simplified into

Fz,sca =
4��0E0

2

3k2 q�nR,nI�g����6, �39a�

Fz,grad =
2��0E0

2

k2 v�nR,nI�h����−2��3, �39b�
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Fz,abs =
4��0E0

2

k2 u�nR,nI�g����3, �39c�

where g��� and h��� are the same as Eqs. �24� and �28�,
q�nR ,nI� and u�nR ,nI� are the same as those defined in Eq.
�34�, and v�nR ,nI� is given in Appendix A.

The particle will be trapped at an equilibrium position
whenever

�Fz,sca + Fz,abs + Fz,grad��z0=zequ
= 0. �40�

By inserting Eq. �38� into Eq. �40�, the equilibrium posi-
tion for beam center is given by

zequ = −
�3

0

�3
1 − � �5

0

�3
1 −

�3
0�5

1

��3
1�2��2 − � �6

0

�3
1 −

�3
0�6

1

��3
1�2��3. �41�

It is noted that the a3 dependence of equilibrium position in
Eq. �33� for a transparent particle is no longer hold for an
absorptive particle. Accordingly, the size scalings of the
equilibrium positions are qualitatively different for absorp-
tive and transparent particles. For absorptive particle, owing
to the absorptive force, the equilibrium position is given by
C+Da2, where C and D are constant.

As mentioned above, the force acting on a particle located
near the focus of the beam can be expressed in the form of
Fz=−�z�zequ−z0�, where �z is defined as stiffness and z0 is
the coordinate of the focus. From Eqs. �35�, �39b�, and �39c�,
we have

�z = 2��0E0
2 2 − nR

2 + nI
2 − �nR

2 + nI
2�2

4�1 + nR
2 − nI

2� + �nR
2 + nI

2�2

a3

l0
2 h��� , �42�

which indicates the a3 scaling in the long wavelength limit.
We note that the a3 scaling of the trap stiffness in Eq. �42� is
valid for both absorptive and transparent particles. Moreover,
it agrees with recent experiments �26�.

IV. APPLICATION

In this section, we apply the formalism we developed ear-
lier to explore the physics of optical trapping. Equation �19�
is valid only if �i� ��� is not too large and �ii� � is not in the
neighborhood of the plasmon resonance of �c=−2. In order
to study how the equilibrium position varies with �, the equi-
librium position as a function of � is plotted in Fig. 1. In Fig.
1, the white region denotes that no equilibrium position ex-
ists. The bottom level of the color bar in Fig. 1 corresponds
to sphere whose equilibrium position is close to the center of
the Gaussian beam, whereas the top level corresponds to the
maximal equilibrium position. It is clear that compared to a
linearly polarized Gaussian beam, particles illuminated by a
radially polarized Gaussian beam are better trapped �much
nearer to the center of the beam�, and it has a much wider
stable region in terms of �r, �i, and � �where �r and �i are the
real and imaginary parts of the complex permittivity, respec-
tively, and �=ka�, for which a particle can be trapped. We
can see that, equilibrium positions for different dielectric ma-
terials are rather different. The larger the ratio of �r /�i, the
closer the particle to the focus, and thus higher stability.

In Fig. 2, we compare our analytical results in the Ray-
leigh limit directly with that of Harada �8�, as well as that of
the accurate numerical calculation based on the Mie theory,
for a polystyrene sphere in water ��= �1.592 /1.332�2�, and as
a function of the normalized axial position of z /kw0

2. In the
Mie theory calculation, Eq. �13b� is truncated at n=2, which
is sufficient for the small spheres �ka�1.6� that we consider
in this paper. In the small particle regime, especially for the
weakly focused Gaussian beam, the three approaches agree
very well with each others, as shown in Fig. 2�a�. However,
for a strongly focused Gaussian beam �w0=0.25 �m�, the
approach of Harada deviates from the others, as shown in
Fig. 2�c�. It is clear that our results agree with the exact
results more than those of Harada. Our analytical results de-
viate from the numerical results in Figs. 2�b� and 2�d�. This
is due to the fact that �=1.6�1, which is beyond the Ray-
leigh regime and therefore the small particle assumption in
our analytical results does not hold anymore. We also find
that, for a weakly focused Gaussian beam with the waist
radius w0=2.2 �m, we cannot trap particles with ��0.2,
and for a strongly focused Gaussian beam with the waist

FIG. 1. �Color online� Equilibrium position as a function of
complex permittivity for a sphere illuminated by a Gaussian beam.
The waist radius w0=�. The size parameter �=0.2 for �a� and �b�,
and �=0.3 for �c� and �d�. �a� and �c� are for the linearly polarized
case �x polarized�, �b� and �d� are for the radially polarized case.

FIG. 2. �Color online� Axial optical force versus z /kw0
2 for a

polystyrene sphere in water ��= �1.592 /1.332�2�. The dashed black
curves are calculated by the accurate Mie theory, the solid green
curves are calculated by our analytical approach, and the dotted
blue curves are calculated by the approach of Harada. The wave-
length of Gaussian beam �=514.5 nm and beam power P
=100 mW. �a� w0=2.2 �m, �=0.2 and �b� w0=2.2 �m, �=1.6,
�c� w0=0.25 �m, �=0.4 and �d� w0=0.5 �m, �=1.6.
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radius w0=0.25 �m, we cannot trap particles with ��0.9
�data not shown�. Accordingly, the higher degree of focusing
of a Gaussian beam, the bigger particles we can trap.

The accuracy of our small particle approximation in pre-
dicting the equilibrium position of a trapped small particle is
illustrated in Fig. 3. One can see that for a particle with small
size parameter �, our analytical results agree well with accu-
rate Mie theory. We also find that given the same parameters,
a radially polarized Gaussian beam can hold a particle much
nearer to the beam center than a linearly polarized Gaussian
beam. We note that the radially polarized beam is known to
be more effective as compared to the linearly polarized beam
in the geometrical optics regime as well as in the Mie re-
gime. Here we have shown that the radially polarized beam
is also favorable in the Rayleigh regime, where the particles
are much smaller than a wavelength.

In order to illustrate the superiority of the radially polar-
ized Gaussian beam as compared to the linearly polarized
Gaussian beam, we introduce a parameter

R = Fgrad/�Fabs + Frad� + 1. �43�

R�0 implies that the particle can be trapped while R�0
implies that the particle cannot be trapped. In Fig. 4�a� we
can see that a radially polarized Gaussian beam is capable of
trapping particles with high dielectric constant, as compared
with that of linearly polarization. Consider for example �we
only present the analytical results because analytical and nu-
merical results show no graphically discernible difference�, a
particle with �r=5 can be trapped by a radially polarized
beam �see Fig. 4�c��, but not with a linearly polarized beam
�see Fig. 4�b��. We know that the effectiveness of optical
trapping depends strongly on the ratio between the real and
imaginary parts of �. As �r decreases, absorption dominates
and thus R increases rapidly, as shown in Fig. 4�a�. On the
other hand, for large �r, the absorption force can be ne-
glected compared to the other forces, and the R curves for

the absorptive and transparent cases joint together. R for
other parameters are plotted in Fig. 5 for reference.

V. CONCLUSION

Using a mixed dipole model to describe the incident trap-
ping beam, simple analytical expressions for equilibrium po-
sition, trap stiffness, and optical forces are derived using Mie
theory in the long wavelength limit, which allows one to
obtain qualitative information on optical trapping. The de-
pendence of these quantities on dielectric constants and inci-
dent polarization are delineated. Analytical expressions of

FIG. 3. �Color online� Comparison for zequ /� versus � between
simplified analytical results and the accurate Mie theory. A spherical
nanoparticle in air is illuminated either by a radially polarized or a
linearly polarized Gaussian beam with the wavelength �
=1064 nm and the waist radius w0=�. Both the transparent particle
with �=5 and the absorptive particle with �=5+0.05i are consid-
ered. In the figure legend, Mie=Mie Theory, Ana=Analytical,
Abs=Absorption, Tra=Transparent, Lin=Linear Polarization, Rad
=Radial Polarization.

FIG. 4. �Color online� A spherical nanoparticle in air with �
=0.5, illuminated by a radially polarized or a linearly polarized
Gaussian beam with the wavelength �=1064 nm and waist radius
w0=�. Simplified analytical calculations for both the transparent
particle and the absorptive particle ��i=0.01� are considered. �a�
Ratio R versus �r, �b� and �c� are Qtot�=Ftot / �nP /c�� versus z /� for
a linearly and a radially polarized Gaussian beam, respectively, with
�r=5, n the refractive index of the surrounding medium, P the
beam power, and c the light velocity in vacuum. In the figure leg-
end, Ana=Analytical, Abs=Absorption, Tra=Transparent, Lin
=Linear Polarization, Rad=Radial Polarization.
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forces are presented both for absorptive and transparent Ray-
leigh particles in a linearly or radially polarized Gaussian
beam. By employing the mixed dipole model �23,25�, our
force expressions are results beyond paraxial approximation.
Moreover, in the paraxial limit, our results correctly reduce
to those of Harada. The equilibrium positions behave differ-
ently for absorptive and transparent particles. The a3 and w0

4

dependence of equilibrium positions is demonstrated for
transparent Rayleigh particles, but for absorptive particles,
the dependency is no longer a3. The trap stiffness is found to
be proportional to a3 for both absorptive and transparent par-
ticles. Comparison between our analytical results and accu-
rate numerical calculations are also presented. Finally, the
superiority of radially polarized Gaussian beam is demon-
strated. Our calculation is valid for a spherical particle. In the
future work, it would be of interest to study the trapping

forces acting on a nonspherical Rayleigh particle. We specu-
late that for a particle whose shape is close to a sphere, one
may simply replace the a3-term in Eq. �33�, which is propor-
tional to the volume of the particle, with the volume of the
nonspherical particle �with appropriate prefactor�.
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APPENDIX A: SOME FACTORS IN FORCES
EXPRESSIONS

The factor g0 in Eq. �22� is given by

g0 =
1

1 + �2 −
3

�

1

�1 + �2�2 +
5

�2

1 − �2/5
�1 + �2�3

− �5 − �2

�3 +
11 − �2

4�4 −
3

4�5��1 + �2�−4. �A1�

where �=� /�.
The factor h0 and h1 involved in the gradient force expres-

sion Eq. �26� for a transparent particle illuminated by a lin-
early polarized Gaussian beam are given by

h0 = �6�−2 − 3�−3 + 3�−4/4��1 + �2�−4

− 4�−1�1 + �2�−3 + �1 + �2�−2, �A2�

h1 = �1 + �2�−5��360 − 1080���� − 1��� + 2�2

− 24�4�42 + 49� − 45�2 − 45�3 − �4��1 + �2�

− 16�5�18 − 49� + 30�3 + �4��1 + �2�2

+ 4�6�� − 1�2�38 + 27� + �2��1 + �2�3

− 12�3�� − 1��362 + 42�2 + �3�1 + �2�

+ 2�2�63 + 23�2� + ��411 + 91�2��

+ 3�2�� − 1���3�1 + �2� + 6�327 + 7�2�

+ �2�526 + 46�2� + ��2011 + 91�2��� , �A3�

The factor q�nR ,nI�, p�nR ,nI�, u�nR ,nI�, and v�nR ,nI� in-
volved in the force expressions of Eqs. �34� and �39� for an
absorptive particle are given by

q�nR,nI� = ��nR
2 + nI

2�2 + 4�nR
2 − nI

2 + 1��−2

 ��2 − nR
2 − nR

4�2 − 2�1 − 2nR
2�nI

6 + 2�2 − 23nR
2

+ nR
4 + 2nR

6�nI
2 + nI

8 − �3 + 2nR
2 − 6nR

4�� , �A4�

p�nR,nI� = nRnI� 126

�nR
2 + nI

2�2 + 4�nR
2 − nI

2 + 1�

+
432�nI

2 − nR
2 − 2�

��nR
2 + nI

2�2 + 4�nR
2 − nI

2 + 1��2 + 1

+
25

4�nR
2 + nI

2�2 + 3�4nR
2 − 4nI

2 + 3�� , �A5�

FIG. 5. �Color online� A spherical nanoparticle in air is illumi-
nated by either a radially polarized or a linearly polarized Gaussian
beam with the wavelength �=1064 nm and waist radius w0=�.
Both the transparent particle ��=1.5� and the absorptive particle
��=1.5+0.01i� are considered. �a� Ratio R versus �i with �=0.5, �b�
Ratio R versus � and �c� Ratio R versus z /� with �=0.5. In the
figure legend, Ana=Analytical, Abs=Absorption, Tra
=Transparent, Lin=Linear Polarization, Rad=Radial Polarization.
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u�nR,nI� =
3nRnI

�nR
2 + nI

2�2 + 4�nR
2 − nI

2 + 1�
, �A6�

v�nR,nI� =
�nR

2 + nI
2�2 + nR

2 − nI
2 − 2

�nR
2 + nI

2�2 + 4�nR
2 − nI

2 + 1�
. �A7�

APPENDIX B: DIFFERENCES BETWEEN OUR RESULTS
AND THOSE BY HARADA et al.

In this appendix, we tabulate the differences between our
analytical force expressions and those by Harada and
Asakura �8�.

Fz,sca
our − Fz,sca

HK = −
��0E0

2

3k2

�� − 1�2

�� + 2�2d��,���6, �B1�

Fz,grad
our − Fz,grad

HK = −
��0E0

2

2k2

�� − 1�
�� + 2�

��2�3

��2 + �2�4

 �3 − 16�3 + 24�2 − 4��3 + 4�2�� ,

�B2�

with

d��,�� =
�2

��2 + �2�4 ���2 + 4�4� + 12�5 + 4�3�5 + 6�2�

− �2�11 + 16�2� − 20�4 + ��3 − 4�2 + 12�4�� .

�B3�

When �→�, the difference between Eq. �B1� and �B2� van-
ish, and the two approaches become equivalent.
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